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Abstract. This paper proposes a novel graph matching algorithm based
on skeletons and applies it to shape recognition based on object silhou-
ettes. The main idea is to match the critical points (junction points and
end points) on skeleton graphs by comparing the geodesic paths between
end points and junction points of the skeleton. Our method is motivated
by the fact that junction points can carry information about the global
structure of an object while paths between junction points and end points
can represent specific geometric information of local parts. Our method
yields the promising accuracy rates on two shape datasets in the pres-
ence of articulations, stretching, boundary deformations, part occlusion
and rotation.
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1 Introduction

Image matching is a fundamental aspect of many problems in computer vision,
including object or scene recognition, solving for 3D structure from multiple
images, stereo correspondence, and moving tracking [1]. In this paper, we focus
on shape matching based on skeletal path similarity. Recent few years have
witnessed a popular way in which skeleton is involved in the image matching
problems. Integrating geometrical and topological feature of the object, skeleton
(or Medial Axis) [2] plays an important role as a shape descriptor for object
recognition. However, the fact that the topological structure of skeleton trees or
graphs of similar objects may be completely different probably remains the most
challenging aspect due to the sensitivity of skeletonization. This fact is illustrated
in Figure 1,the objects from the same class may have different skeleton graph
because of the instability of the critical points (junction points and endpoints).
Thus some nontrivial edit operations (cut, merge, et al.) are inevitable to match
skeleton graphs or trees. This paper presents a novel scheme for skeleton-based
shape similarity measure. The proposed method is based on the similarity of
shortest paths between end points and junction points of the pruned skeletons
[3] to overcome the limitations mentioned above.
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Fig. 1. Visually similar shapes in (A) and (B) have very different skeleton graph in
(C) and (D)

As a preprocess for skeleton matching, we do the merge operation on the
junction points of each skeleton based on their local context similarity. Then,
the junction points and end points of different skeletons are matched in one-to-
one correspondence with minimal cost, and the redundant junction points are
not considered (cut operation on junction points). The penalty cost will be added
for each redundant endpoint in order to compute the final shape similarity.

In section 2, the background of the related methods will be discussed. The
way to match shapes based on the similarity of the skeleton paths between
endpoints and junction points is introduced in section 3 and section 4. In section
5, the experimental results and analysis on two different datasets have been
provided. At last, conclusion and future work are drawn out in section 6.

2 Related Work

The skeleton-based recognition methods are usually based on the graph or tree
representation of the skeletons. Since the skeleton or medial axis is always or-
ganized into an Attributed-Relation Graph(ARG), the similarity between two
objects can be measured by matching their ARGs. Zhu and Yuille [4] matched
the skeleton graphs of objects using a branch-bounding method that was limited
to motionless objects. Shock graph was a kind of ARG proposed by Siddiqi et al.
[5], which was based on Shock Grammar. The distance between subgraphs was
measured by comparing the eigenvalues of their adjacency matrices. Sebastian
et al. have presented a scheme to compute the edit distance between the shock
graphs [6]. Liu et al. [7, 8] can deal with the problem when the two shapes have
different amount of junction points in their skeleton graph. Demirci et al. trans-
form weighted graphs into metric trees for accurate matching [9]. Aslan and Tari
proposed an unconventional approach to shape recognition using unconnected
skeletons in the course level [10]. Bai et al. proposed a method to match ARGs
based on the shortest paths between endpoints [11]. The approach does not re-
quire any editing of the skeleton graph, however, only endpoints were used for
matching in their framework without using the explicit structure of parts.
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Motivated by the skeletal path representation [11], our proposed method
utilizes the shortest paths between all the pairs of end points and junction points
to represent a context of local structures. Utilization of merge or cut operation
similar to [8] in matching phase is used for finding the optimal correspondence
between the critical points on different shapes.

3 Shape Representation with Skeleton Paths

In this paper, all the skeletons for shape matching are extracted and pruned by
the method introduced in [3].

A critical point (endpoint/junction point) can be called a node (end node
/junction node) in a skeleton graph, and the shortest paths between every pair of
nodes are represented as sequence of radii of the maximal disks at corresponding
skeleton points [11]. If there is no other junction node on the path between an

Fig. 2. Some of local paths (in red) in the cat’s skeleton

end node and a junction node, the end node and the junction node is said to
be connected. The shortest path between a pair of end nodes on a skeleton
graph is called a end-to-end path. The path between an end node and the
nearest junction node on a skeleton graph is called a junction-to-end path.
In addition,the path between different junction nodes is called a junction-to-

junction path. We show a few example skeleton paths in Fig 2. Let sp denotes
a skeleton path. We sample the path sp with M equidistant points, which are all
skeleton points. Let R(t) denotes the radius of the maximal disk at the skeleton
point with index t in sp. Let L denotes the length of sp, R denotes a vector of
the radius of the maximal disks centered at the M sample skeleton points on sp:

R = (R(t))t=1,2,...,M = (r1, r2, . . . , rM ) (1)
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In our method, the radius R(S) is approximated with the values of the distance
transform DT (s) at each skeleton point s. Suppose there are N0 pixels in the
original shape S. To make the proposed method invariant to the scale, R(S) is
normalized in the following way:

R(S) =
DT (s)

1

N0

∑N0

i=1
DT (si)

(2)

where si(i = 1, 2, . . . , N0) varies over all N0 pixels in the shape. The shape
dissimilarity between two paths is called a path distance. If R and R′ denote the
vectors of radius of two paths sp and respectively, L and L′ denote the lengths
of the two paths sp and respectively, then the path distance pd between sp and
textslsp’ is :

pd(sp, sp′) =
M∑

i=1

(ri − r′i)
2

ri + r′i
+ α

(L− L′)2

|L + L′|
(3)

Where α is a weight factor. In order to make the representation scale invariant,
the path lengths are normalized.

4 Matching Nodes Using Skeleton Paths

Compared to the method in [11] that only used the end-to-end skeleton paths
for matching the correspondence between end nodes, we match both junction
nodes and end nodes using path similarity. The basic idea here is to match the
junction nodes first using path similarity, then end nodes are matched using path
similarity based on the correspondence of junction nodes. This is reasonable,
since junction points always contain the important structure information for
connecting the local meaningful parts of an object, and matching end nodes are
easy when the correct correspondence of junction points are obtained. However,
a challenging problem is the fact that junction nodes may not be stable, see
example in Fig. 1. In order to solve this problem we do the merging operations
based on the path contexts of junction nodes before matching process and the
cut operations in matching process. In total, our method consists of two steps:
mergence of junction nodes, matching critical nodes.

4.1 Mergence of Junction nodes

We assume there are N junction nodes in a skeleton. The cost to merge two
junction nodes Vi and Vj is defined as following:

cost(Vi, Vj) =

N∑

k=1

pd(spi,k, spj,k) (4)

where spi,k, spj,k denote the junction-to-end paths between every end node and
junction nodes Vi and Vj , and k is the index of the end nodes in a counterclock-
wise direction. And the merging condition is as following:

cost(Vi, Vj) < N ∗ δ (5)
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where δ is a small value as a threshold. Any pair of junction nodes that satisfy
the condition (5) are merged. Fig 3 illustrates an example of the merging process
above. As Fig 3 shows, junction nodes c and d are merged as a single junction
node d because they satisfy condition (5), so are b′ and e′. In our implementation,
we didn’t merge the junction nodes c and d to one node actually. Instead only
one of them will be selected for junction nodes matching.

Fig. 3. The merge of junction nodes of two cats skeletons.

4.2 Matching Critical Nodes

Let G and G′ denote two graphs to be matched, and let the numbers of the
junction nodes in G and G′ be K and N , respectively. Here we assume K 6 N .
It is easy to know that there are CK

N ∗K! kinds of matching cases and our aim
is to obtain the optimal one-to-one matching with the minimal cost. In the case
that the two graphs have different numbers of junction nodes, cut operation will
be implemented by neglecting the redundant junction nodes. Specifically, we
eliminate the junction nodes which are not matched. For example, there are one
junction nodes V1 in G, two junction nodes V ′

1
, V ′

2
in G′ , so 2 kinds of possible

matching cases exist:

V1 ←→ V ′

1
or V1 ←→ V ′

2

In the former, V ′

2
is eliminated and in the latter one V ′

1
is eliminated. Of course, in

most cases,more complex matching situations will occur. In Fig 4, after matching
junction nodes and cut operation(in this case, the junction point d has been
eliminated ), critical points (in this case a,b,c) are obtained. Then, we get the
common structure of the matched skeletons,and the critical nodes are in one-to-
one correspondence.

For any pair of matched junction nodes V and V ′,suppose the numbers of
end nodes adjacent to V and V ′ are m and n respectively. We assume m 6 n.
Thus there are Cm

n ∗m! kinds of matching choices. In this way, we can get U
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Fig. 4. critical points achieved after junction node matching.

kinds of possible matching choices. Each matching choice has a matching cost
and our aim is to obtain the one with the minimal cost. Assume there are Pk

matched paths and Qk unmatched paths in the kth matching choice(k is the
index of matching choices), hence our model can be represented as following:

arg min (costk), k = 1, 2, ..., U

costk = (1 + Qk/Pk)

Pk∑

i=1

pd(spi, sp
′

i) (6)

where spi and sp′i represent skeleton paths in the graphs to be matched, Qk/Pk

functions as a penalty factor if unmatched skeleton paths exist.

5 Experiments

In this section, we evaluate the performance of the proposed method in two
parts: matching the critical nodes in the skeleton graphs, and the recognition
performance of our method on two standard shape databases.

5.1 Correspondence matching

To verify the accuracy of our method, shapes of various objects are matched
and some representative results are shown. Besides the matching of two horses
in Fig 5.(A) ,we test our method on several other examples. Since the structure
of the horse is similar to the cat, our matching process finds the correct corre-
spondence shown in Fig 5.(B). Fig 6 illustrates that the proposed method works
well in the presence of articulation. Fig 7 also shows some matching results in
the presence of occlusion or part missing. In Fig 7.(A) there is protrusion on the
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Fig. 5. Some representative results of correspondence matching.

back of a cat, and in Fig 7.(B) two legs of a horse were removed. It demonstrates
that the proposed method is able to obtain a correct correspondence even if
parts of a shape are altered.

Fig. 6. The correspondence in the presence of articulation

5.2 Robustness of recognition

To evaluate the recognition performance of the proposed method, we test it
on Aslan and Tari’s two databases [10]. The first dataset includes 14 classes of
articulated shapes with 4 shapes in each class, as shown in Fig 8 .We use each
shape in this database as a query. Several representative results are shown in
Fig 9, where five most similar shapes are shown for the queries. Below each shape
is the cost to match with the query. For each query, a perfect result should have
three most similar shapes in the same class as the query. The distance in red
marks an error where this is not the case.Encouragingly, the recognition rate on
this dataset is 99.4% since there are only 1 errors in 168 query results. Moreover,
we can easily observe that the wrong result is very similar to the query. For this
dataset, we use parameters M = 50, α = 45. In Table 1, the result by the
proposed method is compared to the result by other two recent shape matching
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Fig. 7. The correspondence in the presence of occlusion or part missing.

Algorithm 1st 2nd 3rd

IDSC+DP [12] 53 51 38
Path Similarity [11] 55 55 53

Ours 56 56 55

Table 1. Retrieval results on Alan and Tari 56 database [10]

methods. The proposed method performs better both than Inner Distance [12]
in non-rigid deformations and Path Similarity [11], since we use the information
of the junction nodes explicitly.

Fig. 8. Alan and Tari database [10] with 56 shapes

Our method is also tested on another bigger database provided by Aslan
and Tari [13]. The database consists of 180 shapes which have 30 classes with 6
shapes in each class. For each shape, we check whether the 5 closest matches are
in the same class as the query. Some typical results are shown in Fig 10. In the
whole database, there are only 24 errors in 900 query results, so the recognition



Skeleton Graph Matching Based on Critical Points Using Path Similarity 9

Fig. 9. Selected results of the proposed method on Alan and Tari database [10].Distance
in red is the only error.

rate is 97.3%. The numbers of correct shapes for all 900 queries among the 1st,
2nd, 3rd,4th, 5th closest matches are 180,179,174,175,168. Here, parameters are
M = 50, α = 55.

Fig. 10. Selected results of the proposed method on Tari’180 database [10]. Distance
in red are errors

We now analyze the computational complexity of the proposed method. Let
Mi be the number of end nodes in the graph Gi, and let Ni be the number of
junction nodes in Gi. Since the implementations in section 4.2 and 4.3 cost the
most time, the time complexity of our method is approximately O(Mi! ∗ Ni!).
However, since the number of junction nodes Ni has usually been significantly
reduced to less than 7 after the merging process in section 4.1, the average time
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for matching per pair of shapes is very small. In this experiment, it is only 0.8
second.

6 Conclusion

In this paper, we propose a novel method to match skeleton graphs. The most
important contribution is the merge and cut operation on junction nodes of
skeleton graphs. The effect of these operations is the introduction of the struc-
tural information of the skeleton, which is very helpful in matching. As a result,
our method is simple and efficient in correspondence matching even in the pres-
ence of occlusion and articulation. The experiment shows that the merge and
cut process of junction nodes in our method have advantages over the method
based only on path similarity. In the future, our work will focus on classification
based on the construction and unsupervised learning of tree union of skeletons.
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